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1 Introduction

We let G be a simple graph with n > 1 vertices and Ag be its adjacency matrix. The
chromatic number x(G) is the minimum number of colors needed to label the vertices so that
adjacent vertices receive different colors. Since each color class must be an independent set,
X(G) < rif and only if G is r-partite (Recall that a graph is said to be r-partite whenever
the vertex set can be expressed as the union of r independent sets).

It follows that if x(G) = r, we can partition the adjacency matrix Ag into r x r blocks
such that Ag=[A4;]; ;_, with
A;i=0 forall 1<i<r.

Note that the diagonal blocks A;; for all 1 <4 < r are not only zero matrices, but they are
also square matrices by construction. Since the adjacency matrix Ag is real and symmetric,
it must have real eigenvalues by the spectral theorem. Accordingly, we let u1, 2, ...,y be
the eigenvalues of Ag, sorted in non-increasing order.
The Hoffman lower bound [2] on the chromatic number is one of the best known results
in spectral graph theory. It states that
M1

e (1)

where p1, po are the maximum and minimum eigenvalues, respectively.

Over the years, many studies have found lower bounds for x(G). In 2013, Wocjan and
Elphick [5] found a significant improvement over the existing lower bounds for the chromatic
number x(G). Specifically, they proved that

m
X(G) > 1+ max iz i

——==" for m=1,...,n—1. (2)
m _Zizlﬂnfz#l

Their results generalize the Hoffman lower bound (2) given above, which occurs as the
special case of (2) when m=1. They also conjectured the lower bound

st
(@) 21+ 3)

where sT and s~ are the sums of the squares of positive and negative eigenvalues, respec-
tively. To corroborate this conjecture, they looked for counterexamples, but none were
found. They left this as an open question, but the result was proved in [1], which is the
subject of this 501 project. Specifically, this project will prove the conjecture, stated as The-
orem 1.1 below, and will showcase the close interplay between graph theory, linear algebra,
and matrix analysis.

Theorem 1 Let Ag denote the adjacency matriz of a graph G, and let w,v and § denote
the numbers of positive, negative and zero eigenvalues of Aq, respectively. Let

st=pl+ps+-4pl,  and  sT =g+ e o (4)

Then
+

M@ =1+ = (5)



This spectral approach to studying the structure of graphs is somewhat limited by the
fact that there exist non-isomorphic graphs that are co-spectral, meaning that the eigen-
values of the adjacency matrices of the graphs are the same. This shows that the spectrum
of a graph can only provide partial information when we study the structure of the graphs.
Nevertheless, spectral methods can be very effective in cases when graphs have special
properties, such as symmetries. Spectral graph theory has found applications in chemistry,
network design, coding theory, and computer science. It also was useful to Larry Page of
Google, whose patented PageRank algorithm uses the Perron-Frobenius eigenvector of the
graph of the world-wide web.

2 Preliminaries

We begin with some basic definitions from graph theory and linear algebra, then prove a
number of inequalities involving the Frobenius norm. This norm is central to our main
result giving the new lower bound for the chromatic number. Finally, we will apply these
results to the adjacency matrix to obtain the theorem.

2.1 Graphs

We begin with a few basic terms regarding graphs.

A graph G consists of a vertex set V(G), an edge set E(G), and a relation that
associates with each edge two vertices called its endpoints. A graph is simple if it has no
loops or multiple edges. We specify a simple graph by its vertex set and its edge set, and
we will be concerned only with finite undirected graphs. When u and v are the endpoints
of an edge, they are said to be adjacent, written u ~ v. In this case, we refer to the shared
edge as uv. For more detail on these concepts, see [4].

2.2 Chromatic number

We now discuss the chromatic number of a graph.

An r-coloring of a graph G is a labeling f : V(G) — S, where |S| = r. We refer to
the labels as colors, and the vertices of the same color form a color class. In a proper
r-coloring, adjacent vertices must have different colors, so the color classes must be inde-
pendent sets. If a graph requires at least r colors to be properly colored, we refer to r as the
chromatic number x(G). In other words, the chromatic number is the minimum number
of colors needed to label the vertices so that adjacent vertices receive different colors. A
graph G is r-partite if V(G) can be expressed as the union of r independent sets.

The clique number of a graph G, written as w(G), is the maximum size of a set of
pairwise adjacent vertices in G. The independence number, written as «(G), is the
maximum size of a set of pairwise non-adjacent vertices in G. For every graph G, we have
X(G) > w(G) and x(G) > % The first bound holds because vertices of a clique require
distinct colors. The second bound holds because each color class is an independent set and
has at most a(G) vertices.

As an example, the Petersen graph is an undirected graph with 10 vertices and 15
edges (see Figure 1). The Petersen graph has chromatic number 3, meaning that its vertices
can be properly colored with three colors — but not with two.



Figure 1: Proper 3-coloring of the Petersen graph

2.3 Adjacency matrix and conformal partitions

When we specify a graph, we typically list the vertices and edges. Let G be a loopless
graph with vertex set V(G)={v1,...,v,} and edge set E(G)={e,...,em}. The adjacency
matrix of G, written as A(G), is the n X n matrix in which entry a; ; is 0 or 1, depending
on whether there is an edge in G with endpoints {v;,v;}. In other words, adjacency matrix
A is defined by

A = { 1 ifin~g
. 0 otherwise

Note that an adjacency matrix depends upon the given vertex ordering to index the rows
and columns. Every adjacency matrix of a simple graph is symmetric (i.e. a;;=a;;) and
has entries 0 or 1, with only zeros on the diagonal. The degree of a vertex v is the sum of
the entries in the row for v in A(G).

Returning to our example, let A denote the adjacency matrix of the Petersen graph.
Then if we order the vertices clockwise, first around the outside, then around the inside, we
obtain the following adjacency matrix:

0100110000
101 000 1O0O0O0
0101000100
001 01 00010
A= 1001 0 0 O0O0O01
1000 0O0O0OT1T10O0
01 000O0O0O0T171
001 00O1O0O0O0T1
0001011000
0000101100

We close this section with one more definition. We say two block matrices A and B are
conformal for multiplication when their block sizes are suitable for block multiplication.
In this case we find that the product of an m x n block matrix with an n x p block matrix
results in an m X p block matrix, so that

Amxn X anp = Umxpy



where Ci,j = Z:l A@k X BkJ‘.
For example, if A is 2 x 3 matrix and B is 3 x 4 matrix, then they are conformal for
multiplication and we can get 2 x 4 matrix C.

2.4 Eigenvalues and Eigenvectors

The eigenvalues of a matrix A are the numbers p such that
Ax = px

has a nonzero solution vector x. The vector x is called an eigenvector associated with the
eigenvalue p. The eigenvalues of a graph are the eigenvalues of its adjacency matrix A.

These are roots ui,...,u, of the characteristic polynomial
n
$(G; p) = det(ul — A) = [ [ (1 — pi)- (6)
i=1
The spectrum is the list of distinct eigenvalues with their multiplicities my,...,m;. We can
write
_( B M
Spec(G) = < mi ...y >

For example, since the characteristic polynomial of the Petersen graph P is

(@ =3)(z 1) (x+2)",

Spec(P) = ( i’ ;) *42 )

The trace of a matrix is the sum of the diagonal elements or the sum of the eigenvalues.
So the trace of a simple graph is 0. Indeed, the trace of Petersen graph above is 0 since the
sum of the diagonal entries (and the sum of eigenvalues) equals 0.

the spectrum of P is

2.5 Spectral Theorem

Relating the eigenvalues to other graph parameters will require several results from linear
algebra, including the spectral theorem for real symmetric matrices.

Theorem 2 Let A be any real symmetric n X n matriz. Then
1. A has n real eigenvalues piy, ..., p, (not necessarily distinct).

2. There is a set of n corresponding eigenvectors vy, . . . , vy, that constitute an orthonormal
basis of R™, that is, UZ-TUj = 0;5 for all i, j.

Proof. 1. Assume A is a real symmetric n X n matrix. Since the characteristic polynomial
has degree n, we know A has n complex eigenvalues, counting multiplicity. To see that these



are real, suppose Ax = px with  # 0 and g € C. Then

pi's = & ()

Il
I
~
b
8

= ur .

Because = # 0, we know that 27z # 0. It follows that u = i and pu € R.
2. This fundamental result is found in many introductory linear algebra texts. For ex-
ample, see [3, p.104]. O

The next corollary recasts the spectral theorem in terms of a matrix decomposition.

Corollary 1 Let A be a real symmetric n X n matriz with eigenvalues p1, ..., py, Let M
denote the diagonal matriz of eigenvalues and let V denote the matriz whose columns are
the corresponding orthonormal eigenvectors vy, ..., vn. Then

1. The matriz A can be written as A =V MV7T, so that

oT
pr 0 0 L
0 0 U2
A:<v1 Vg ... vn) 0 %2 0
0 0 Un vff
2. The matriz A satisfies
A = ulvlvf + ugvgvg 4ot unvnvg

n

2 : T

== Hi U0, .
i=1

Proof. 1. Since the v;’s are orthonormal, we have V is invertible with V="' = V7 and
VVT = I. For any 1, if e; denotes the standard basis vector, then

VTAVSi = VTA?)i = VT[IJZ"UZ‘ = [Ll'VT’Ui = W;€; = Mel-.

Thus M = VT AV, which implies A = VMVT.

2. For any j,
(Z mwv?) vj = pvj = Avj.
i=1
Since the v; form a basis, it follows that A = Z?zl uiviviT. O



2.6 Frobenius Norm

For an m x n matrix A, the Frobenius norm ||A||r is a matrix norm defined as the square
root of the sum of the absolute squares of its elements, so that

> a2 (7)

i=1j=1

1AllF =

The conjugate transpose of an m X n matrix is obtained by interchanging the rows
and columns and then taking the complex conjugate of each entry. The Frobenius norm
is also equal to the square root of the matrix trace of AT A where AT is the conjugate
transpose, i.e.,

IAllF = 4/ tr(ATA). (8)

If F = R, then the conjugate transpose of a matrix is the same as its transpose, which is
the matrix obtained by interchanging the rows and columns.

Example. The conjugate transpose of the matrix

2 3+4i 7
6 5 81

is the matrix

2 6
3—4i 5
7 —81

A Hermitian matrix is a complex square matrix that is equal to its own conjugate
transpose. In other words, the element in the i-th row and j-th column is equal to the
complex conjugate of the element in the j-th row and i-th column, for all indices i and j.
So if A;; denotes the ij-entry of a matrix A, then

A is Hermitian & A = Tﬂ
Writing this in matrix form gives us:
Ais Hermitian & A= AT,
Proposition 1 The entries on the main diagonal of any Hermitian matriz are real.
Proof. Let A be a Hermitian matrix. Then by definition,
Ay = 7.
When i=j, the result follows. O

Only the main diagonal entries are necessarily real. Hermitian matrices can have arbi-
trary complex-valued entries in their off-diagonal elements, as long as diagonally-opposite
entries are complex conjugates.

Proposition 2 A matriz that has only real entries is Hermitian if and only if it is sym-
metric.



Proof. Assume that A has only real entries. By definition, A is Hermitian if and only if
Aij = Aji
for all i and j. Since A;; is real, A;j=A;;. So A is Hermitian if and only if it is symmetric. O
We now explore some properties of Hermitian matrices and the Frobenius norm.
Proposition 3 The sum of any two Hermitian matrices is Hermitian.
Proof. Assume that A and B are Hermitian. Then
(A+ B)ij = Aij + Bij = Aji + Bji = (A + B)ji.

It follows that the matrix A + B is also Hermitian. O

Theorem 3 A matriz norm is a function || - || from the set of all real (or complex) matrices
of finite size into RZ° that satisfies

1. A >0 and [|A|=0 iff A=0O (a matriz of all zeros).
2. |laAll = ||a|l|All for all a € R.
3. [|lA+ Bl < [[All + [|B]]

Properties (4)-(6) are additional properties of the Frobenius norm.
4 1Al = ATl
5. |AAT] = || A|? = | AT Al
6. [|AB| < [[A[llIB]]
Proof. These are standard derivations that can be found in most textbooks on linear

algebra. For example, see [3]. O

2.7 Positive Semidefinite Matrices

A real symmetric n X n matrix A is said to be positive semidefinite whenever
v Av >0

for all v € R™. Positive semidefinite matrices are also easily characterized in terms of
eigenvalues.

Theorem 4 Let A be a real symmetric n X n matriz. Then A is positive semidefinite iff all
its eigenvalues p; > 0 (i.e. all eigenvalues are non-negative).



Proof. (=) Suppose A is positive semidefinite. Let p1, ..., 1, be the eigenvalues of A with
corresponding basis of orthonormal eigenvectors vy, ..., v,. Then, by definition, v” Av > 0
for all v € R™. So for all 4, it must be the case that p; = viTAvi > 0.

(<) Suppose that all of the eigenvalues of A satisfy p;> 0. Then for any v € R", we have

n n
vl Av =0T (Z uww?) v= Z,ui (v- 0)2 > 0.
i=1 i=1
So A is positive semidefinite. a

Example 1 The n X n identity matriz is positive semidefinite. All the eigenvalues are 1
and every vector is an eigenvector. It is the only 3 X 3 symmetric matrix with all eigenvalues
1.

1 00

01 0

0 0 1
Example 2 The following matriz is positive semidefinite:

1 -1

-1 1 ’

)T is any vector, then T Mz = (x1 — x2)? > 0.

To see why, note that if © = (1 a2

Note that, although the sum of two positive semidefinite matrices is positive semidefinite,
the product of two positive semidefinite matrices need not be semidefinite. The next result
considers the direct sum.

Proposition 4 The direct sum matric A ® B, where

A 0
won(49)

is positive semidefinite iff A and B both are positive semidefinite.

Proof. To see why, first note that A ® B is symmetric iff A and B are symmetrix. Now,
consider the quadratic for 27 (A @ B)x. The vector & can be divided into z; and x5, and

2T (A® B)x = 2T Azy + 21 Bas.
The result follows. O

We conclude this introduction with a few key properties about positive definite matrices
that will be used in our proof of the main result. Their derivations can be found in many
textbooks on linear algebra, for example [3].

The first of these tells us that when a matrix is positive semidefinite, its diagonal should
dominate the non-diagonal elements.

Proposition 5 If A is positive semidefinite, then each off-diagonal element of A is less
than or equal to the diagonal element in its row or in its column.

10



Proof. Assume A is positive semidefinite. The quadratic form of A is
CL‘TAJJ = ZAZ‘J‘CCZ‘.TJ‘, (9)
0,J

where x; denotes the respective components of . Since A is positive semidefinite then (9)
is non-negative for every x. By choosing x to be a standard basis vector e;, we get A;; > 0.
Let z have only two nonzero entries, say x = e; + e;. Then,

< At Ay

Aij < 5

This shows that any off-diagonal element is less than or equal to the diagonal element in its
row or in its column. O

For a block matrix, the diagonal blocks are going to be assumed to be square in this
paper. For example, consider a block matrix of the form

A B
w-(&5)
where A, B,C and D are themselves matrices. In this example, let
4 4
A= 0 2 , B= 333 ,C=1| 4 4 and D =
2 0 3 3 3 44

Therefore, the matrix is

ot O Ot
O o O
Tt O Ut

<

I
NS N I
NS SN
oo otw w
o vto|lw w
cno UL w

Theorem 5 (Schur’s complement) Let M be any symmetric 2 X 2 block matrix:

A B

Then M is positive semidefinite iff D and the Schur complement A — BD™'BT are both
positive semidefinite.

Proof. This is a standard derivation that can be found in most textbooks on linear
algebra. For example, see [3]. O

Finally, we include the following important inequality regarding the Frobenius norm of
a 2 x 2 block matrix.

11



Theorem 6 [3, p.209] Let M be any symmetric 2 x 2 block matriz:

A B
u-(A3).
If M is positive semidefinite, then the Frobenius norm of the blocks of M satisfy
IB|I* < [IAl[IDI].

Proof. The proof of this important result can be found in [3, p.209]. ]

3 Main Result

In this section we present the proof of the main result of the paper by Tsuyoshi Ando
and Minghua Lin [1].

For any simple graph G, the adjacency matrix Ag is real symmetric, so the eigenvlaues
of Ag are real numbers, which we denote by p1,. .., u, such that p; > ps > -+ > p, (in
non-increasing order). Let the m, v, and § be the numbers of positive, negative and zero
eigenvalues of Ag respectively. Let

and

We aim to prove the following theorem.

Theorem 1 Let st, s~ be defined as above. Then,

st
G 21+ (12)
To begin, we recall the definition of the Frobenius norm. For any matrix X, we have
1X|F = vir(X*X) (13)

If X is Hermitian, so that X=X* (where X* is a conjugate transpose of X), then || X||% is
equal to the sum of the squares of all the eigenvalues of X.

Example 3 Let X denote the following Hermitian matriz:

1 1—4 2
X = 1+ 3 v
2 -t 0

Then, the trace of X*X is the sum of squares of all diagonal entries. In particular,

IX)lp=v1+0—9)2+4+0+i)2+9+i2+4+(—9)2+0=16=4.

Since the sum of the n eigenvalues of X is the same as the trace of X, the sum of eigenvalues
is also 4. This is confirmed, since 1 +3 40 =4.

12



Our next result relates the norm of such a matrix to the norms of its blocks.

Lemma 1 Let X:[Xij];jzl be a positive semidefinite matriz that is given in r X r block
form. Then

X138 <) 1 Xl (14)

i=1
Note that we will use ||X||? instead of || X||%

Proof. Since X = [Xij];jzl is positive semidefinite, so is any principle submatrix. There-

fore, the 2 x 2 block matrix ( X Xy

must be positive semidefinite. We claim that
Xji Xjj

1511 < 1 Xl X 5511 <

11 + 11X 551
o (15)

First inequality comes from Theorem 6. To derive the second inequality, note that

(Xl = 1X551D)* = 0.

This is equivalent to

1Xi 117 = 201Xl 1 X551l + 15511 > 0.
Rearranging, we obtain
X1 + 11 X511
11651 < I

Summing over all ¢ # j and applying (15), we have

Xl + 1 X512
X2 < Xaall® + 116551
PIRAEEDPEL

i#£] i#£]
But
S G Xl Xl X
2 N 2 2
i#£j
X 2+ X 2 X 2+ er 2
Xl 2|| ull® L X 2|| [
X7'7- + || X 2 er 2+ XT— r— 2
Xl 1Kl el 4 X
2 2
= (=1 Xul*+ (r = DI Xaa|? + - + (r = DI X[
= (r—=1))_ IXul*
i=1
Therefore,

SIXGI2 < (= 1) Y IXal>
=1

i#j

13



Hence,

X1 = Z 1 l1® + > 1501

i#]

< STIXl? - )3 IXal?
i=1 =1
=y l1Xal*
i—1
The result follows. |

Lemma 2 Let X and Y be real symmetric matrices such that XY = 0. Then
XY*"=X'Y=Y*X=YX"=0.

Proof. Since X and Y are real and symmetric, X* = X and Y* =Y. Because XY =0, it
follows immediately that
XY =XY*=0.

But since 0* = (XY)* = Y*X*, we also have
Y*X=YX*=0,
and the result is proved. O
Lemma 3 Let X and Y be matrices, and assume that XY = 0. Then
IX+Y)? =X - Y|

Proof. Let X and Y be as given. Then we have

X +Y|? = tr(X+Y)"(X+Y)
tr (X*+Y")(X+Y)
= tr(X*'X+Y' X+ XY +Y"Y)
tr (X*X4+04+0+Y"Y)
tr (X*X) +tr (YY)
= |X|?+ Y|P

Similarly, we have that

X -y

|
-+

r(X - Y) (X —Y)
tr (X* - Y*)(X - Y)
(X
(

= tr(X*X —Y*X — XY 4+ YY)
tr (X*X —0—0+Y*Y)

tr (X*X) 4+ tr (YY)

= X +1y)?

The result now follows. O

14



Lemma 4 Let X = [X;;];;_y and Y = [Y;]; ;_; be positive semidefinite matrices that are
conformally partitioned into blocks, and assume that XY = 0. Further, assume that the
diagonal blocks of X andY coincide, so that X;; = Yy for alli (1 <i <r). Then

AN NIXall® + D0 1K+ Vi ll? =D 1K = Yig* (16)
=1 i#] i#]
Proof. First we consider || X — Y||?. The (1, 1)-block of (X + Y)*(X +Y) is:

(Xi7 +Y79) (Xan + Vi) + (X5, +Y5)) (Xon + Yar) + -+ + (X7 + Y1) (X1 + Vi)

Likewise, the (2,2)-block of (X +Y)*(X +7Y) is:

(XTo +Y75) (Xag + Yi2) + (X35 + Y55) (Xog + Yao) + -+ + (X7 + Y5) (Xr2 + Vi) .

Continuing in this way, we find that the (r,r)-block of (X +Y)*(X +7Y) is:

(XT, +Y00) (Xar 4+ Yir) + (X3 + Y5,) (Xop + Yap) + - + (X7 + V) (Xor + Vi)

So, when we consider the sums of the underlined terms above,
tr (X5 +Y5) (X +Yi) = tr (X5 + X5) (Xi + Xig)
= tr(2X}) (2Xu)

= 4] Xl
Therefore,
X +YI7 =43 11Xl + D 1K + Vil (17)
i=1 i#j

On the other hand, we consider || X —Y||%. The (1,1)-block of (X — Y)*(X —Y) is:

(X711 = Y1) (X = Vi) + (X5, = Vo) (X = You) - 4 (X7y = Y5) (X1 = Vi)

Likewise, the (2,2)-block of (X —Y)*(X —-Y) is:

(XTy = Y75) (Xi2 — Yio) + (X355 — Y55) (Xop — Yoo) + -+ + (X[, = V5) (X2 — Vi) .

Continuing in this way, we find that the (r,r)-block of (X —Y)*(X —Y) is:

(Xikr - Yl*r) (le“ - er) + (X;r - Yz*r) (X2r - Y2T) R (X:r — Y;r) (XM — YM’)'

Since the diagonal blocks of X and Y coincide, the underlined terms are all zero. It follows
that

IX = Y[? = 11X — Vil (18)
Y
Thus, by Lemma 3, since || X + Y||? = || X — Y||?, lines (17), (18) imply the result. O

15



Lemma 5 Let X = [X;;];;_ and Y = [Y;]; ;_; be positive semidefinite matrices that are
conformally partitioned into blocks, and assume that XY = 0. Further, assume that the
diagonal blocks of X andY coincide, so that X;; = Yy for alli (1 <i <r). Then

SOIXul? ==Y R (XY,
i=1

i#]

Proof. By Lemma 4,

4 IXal® = Y IX = YilP = Y 11X + Y1
=1

i#j i#]
= D (tr(Xiy = Yig)" (Xij = Yig) — o (Xij + Yig)" (X5 + Vi)
i#j
= Y tr (X — Yiy) (X — Vi) — (X + Vi)™ (X5 + Y5)))
i#j
= Ztr 2X* 2Y£§'Xij)
i#]
= =2 tr (XY, +Y5Xy)
i#j
= =2 (tr (X};Yy) +tr (V5 X))
1#£]
— _QZ <tr (X;‘J»Yij) +tr(Xi*jYij))
i#j
= —22 (tr ((ijyij) +W))
i#j
= —2) tr(2-R(X;Y5))
i#j
= 4>t (R(X5Y5)),
i#j
and the result follows. =

If you take r = 3, X:%Jg and Y:Ig—%Jg, then from Lemma 1 to Lemma 5 can be
verified.

Now we present the following theorem, then we apply it to prove the main result.
Theorem 7 Let X = [X;5]},—; and Y = [Yi;]} ;_; be positive semidefinite matrices that
are conformally partitioned into blocks, and assume that XY = 0. Further, assume that the
diagonal blocks of X andY coincide, so that X;; = Yy for alli (1 <i <r). Then

1X1* < (r = DY
Proof. By Lemma 3,
X +Y|? =X -V

16



By Lemma 4,

4Z||XM”2+Z”XU+Y;JH2 > 11X = Yl

i#] i#]
So by Lemma 5,

T
Z”Xn‘HQ Z% (tr(X35Yi
i=1 i#]
So the Cauchy-Schwarz inequality implies, with d := Y",_, || X4/, that
d <y 1% 1Y
i#]
Again applying the Cauchy-Schwarz inequality, we now have

2 2

d< [ Yuxu12) 1D vl

i#] i#]

The right side above can be written as

(IX]2 = d)* (V] —d)*,

N

so it follows that
2 AXPPIYIE = XN+ 1Y11%)d + d2.

Rearranging, we obtain
(IXI2+ 1Y% d < [1XIPIY)?

By Lemma 1,

IX1? <m0 I1Xl? = rd

i=1
Combining the two inequalities above with d > 0 yields

X117+ Y112 < Y],
as desired.

Now we are ready to present the proof of Theorem 1.

(19)

Proof of Theorem 1. Let Ay denote the adjacency matrix of a graph G, and let 7, v and
0 denote the numbers of positive, negative and zero eigenvalues of A respectively. Consider

the spectral decomposition of Ag:

n
Ag = Z iUy
i=1

Write the adjacency matrix as Ag = B — C, where

n

B:i,uivivf and C = Z (—p); vivy,
i=1

i=n—v—+1

17
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If we let r denote the chromatic number x(G), then the color classes of a proper -
coloring partition the matrix Ag into r X r blocks. This partition is inherited conformally
by the matrices B, C'. Since Ag has zero blocks on the diagonal, B and C must have

identical diagonal blocks.

Since B and C' both have all positive eigenvalues, they are both positive semidefinite. By
the orthonormality of the basis of eigenvectors, they also satisfy the condition that BC' = 0.

Theorem 8 gives us
IB]I* < (r = 1) |CI*.
Since ||C]|? is not zero, this implies
1B _
el =

1+

Taking into account that
st =pi+ps o+ oz =Bl

and
s = Miflﬂrl + /1’317V+2 +ooet ,U,i = HC||2’

we obtain the desired result.

Interchanging the roles of B and C' if necessary, we have the following.

Corollary 2 Let G,S , S be as previously deﬁned Then
(G)>14m {57 °y
ax{—, —|.

X — 8+7 s~

Theorem 8 (Hoffman [2, p.79-91]) The chromatic number is bounded by
H1
—Hn

X(G) > 1+

4 Applications

We conclude with a number of examples to illustrate the power of the results and compare

the Hoffman lower bound.

Example 4 Let H be the House graph, shown below.

Proper 3-coloring of the House graph
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Then the corresponding adjacency matriz Ay is given by

Ay =

[ R R =)
OR Rk O
_— O O =
—_— O O = O
ORLr R, OO

So we can verify the lower bound for the House graph as follows. Since the eigenvalues are
w1~ 2481, pe =~ 0.689, pus =0 pug = —1.170, ps = —2,

we have that
st =pf+ p3 ~6.63

and
87 = uj + pi+ = 5.369.

Therefore,
Jr

14+ 2 ~ 2935,
—

which is lower bound for the chromatic number of the House graph. As we must use at least
3 colors to properly color H, we have x(H) is 3. In this case, the Hoffman bound is

14+ ~o041,

—Hs
so the Hoffman bound is better than the new bound.

Example 5 Let P be the Petersen graph, shown below.

Proper 3-coloring of the Petersen graph

The spectrum of eigenvalues are below:

= (31 7)

So st =14 and s~ = 16. Therefore,

.
L+ — =~ 2143,
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which is lower bound for the chromatic number of the Petersen graph. The actual value of
x(P) is 8. The Hoffman bound of the Petersen graph is

H1
—H10

1+ =25,

so the Hoffman bound is better than the new bound.

Example 6 Let C be the Clebsch graph as shown below.

Clebsch graph

The Clebsch graph consists of a 5-regular graph with 40 edges. Since the characteristic
polynomial is . 0
(+3)" (u—1)"(n—5),

the spectrum of eigenvalues are below:
-3 1 5
®“W)(5 101>

Since sT = 35 and s~ = 45,
5
1+ p ~ 2.286,
which is a lower bound for the chromatic number of the Clebsch graph. The chromatic

number x(C) is known to be 4. The Hoffman bound of the Clebsch graph is

M1
—H16

1+ ~ 2.667,

so the Hoffman bound is better than the new bound.

Example 7 Let G be the Grotzsch graph, shown below.
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Grétzsch graph
The Grotzsch graph is a triangle-free graph with 11 vertices and 20 edges. Since the char-
acteristic polynomial of the Grétzsch graph is
5 2
(1 =1)7 (1 = p = 10) (4 +3p+1)",

we find that
sT x18.702, and s = 21.298.

Therefore,
o
1+ p= ~ 2.139,
which is a lower bound for the chromatic number of the Grétzsch graph. It is known that
X(G) = 4. The Hoffman bound of the Grétzsch graph is

M1
—H11

so the Hoffman bound is better than the new bound.

1+

~ 2.370,

5 Conclusion

Spectral bounds in graph theory typically give graph theoretic information in terms of some
function of the eigenvalues of the adjacency matrix. In this paper, we have investigated
a new lower bound for the chromatic number which involve all of the eigenvalues of the
adjacency matrix. By proving the conjecture of Wocjan and Elphick, this work provides an
unexpected relationship between the signs of the eigenvalues of the adjacency matrix and
the chromatic number of the corresponding graph. Also, we verified the power of the new
lower bound for some examples comparing the Hoffman bound.
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